Name:	
Date:	Blk:

Organic Chemistry

Why study organic chemistry?

Organic chemistry is everywhere! All living things are made of organic compounds, like food and humans. Also without the study of organic chemistry modern day life would be very different. For example, most medicines are made of organic compounds such as antibiotics, anticancer drugs, painkillers etc.

What is organic chemistry?

Organic chemistry is the study of compounds that contain carbon. However, there are some examples of compounds that have carbon but are inorganic. Ex. CO_2 , CO, and carbonates ($CO_3^{2^-}$).

Carbon is a very versatile element because it can have four bonds, so it can create bonds with many different elements. Generally, in organic compounds carbon atoms will be bonded to a hydrogen atom, but they can easily form bonds with nitrogen, oxygen, sulfur, phosphorous, and nitrogen.

Table 5.7 Comparing Formulas of Organic Compounds and Inorganic Compounds				
Organic: Must Co	ontain Carbon	Inorganic Containing Carbon		
CH ₄	methane (a hydrocarbon)	CaCO ₃ , Na ₂ CO ₃ (carbonates)		
CH ₃ CH ₂ OH	ethanol (an alcohol)	Al ₄ C ₃ , SiC (carbides)		
C ₆ H₅COOH	benzoic acid (an organic acid)	CO, CO ₂ (oxides)		
K ₂ HC ₆ H ₅ O ₇ potassium citrate		Inorganic Not Containing Carbon		
	(an organic salt)	FeCl ₂		
C ₈ H ₁₀ N ₄ O ₂	caffeine (a stimulant)	(NH ₄) ₂ SO ₃		
CH ₃ (CH ₂) _n CH ₃	polyethylene (a plastic) where $n = 5000$ approximately and the CH ₂ unit repeats about 5000 times	PBr ₃		

Is it organic or inorganic?

What difference do you notice between the organic compounds and the inorganic compounds?

Important:

In organic chemistry, the hydrogen will always go after the carbon when writing formulas. For example, methane is always CH_4 and never H_4C .

What type of compound has hydrogen at the front of the formula?

Hydrocarbons

A hydrocarbon is an organic compound that only contains carbon and hydrogen. Hydrocarbons are the simplest examples of organic compounds.

Table 5.8 The First Five Hydrocarbons					
Name 1	Molecular Formula	Structural Formula	Shortened Structural Formula	Space-Filling Model	Common Uses
methane	CH ₄	H H H H H H	CH4		 Natural gas heaters
ethane	C ₂ H ₆	H H H I I H C C C H I I H H	СН ₃ СН ₃		• Manufacturing plastic
propane	C ₃ H ₈	H H H H I I I H C C C C C H I I I H H H	CH ₃ CH ₂ CH ₃		• Camp fuel
Pentane	C ₄ H ₁₀	H H H H H I I I I H C - C - C - H I I I I H H H H	CH ₃ CH ₂ CH ₂ CH ₃		 Hand-held lighters
	C ₅ H ₁₂	H H H H H H I I I I I H C - C - C - C - C - C - C I I I I I H H H H H	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃		Component of gasoline

Note: all hydrocarbons are flammable, which is why they tend to be used as fuels.

Name:	
Date:	Blk:

Alcohols

Alcohols are another type of organic compound. They are very similar to hydrocarbons, but they contain carbon, hydrogen, and oxygen.

Table 5.9 Some Common Alcohols					
Name	Molecular Formula	Structural Formula	Shortened Structural Formula	Space-Filling Model	Common Use
methanol	CH₄O	H H— C — O — H H	СН₃ОН		Solvent
ethanol	C ₂ H ₆ O	H H H C C C O O H I I H H	СН₃СН₂ОН		• Fuel
isopropyl alcohol	C3H80	H H O H H-C-C-C-H H H H	(CH ₃)CH ₂ OH		SterilizerCleaner

What pattern do you notice about the naming of alcohols?